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In this paper, we present a numerical method for solving the radiative transfer
equation that models electromagnetic wave propagation in a constant background,
plane-parallel medium containing randomly distributed, identically sized, dielectric
spheres. Applications of this study include optical waves in media such as biological
tissue and fog as well as millimeter waves in rain. In these problems, the scattering is
highly anisotropic, which is problematic for standard methods that approximate the
integral term of the radiative transfer equation first to yield an associated system of
differential equations. In our method, we use a Chebyshev spectral approximation of
the spatial part of the 4 1 vector of Stokes parameters. This spectral approximation
then yields a coupled, linear system of integral equations that has a bordered, block
sparsity structure that can be efficiently solved using a deflated block elimination
method. By readjusting the focus of this numerical method to the integral operators
instead of the derivative operators, we find that we can effectively study highly
anisotropic scattering media. We present some examples of Mie resonant scattering
in which a circularly polarized plane wave propagates and scatters in a plane-parallel
medium containing randomly distributed, identically sized, dielectric spheres whose
radii are comparable to the wavelengthe) 1999 Academic Press

Key Words:radiative transfer equation; Chebyshev spectral methods; deflated
block elimination method; Mie resonance scattering.

1. INTRODUCTION AND SUMMARY

The radiative transfer equation models a radiation field in a medium that scatters, absc
and emits radiation [1]. One application of the radiative transfer equation is electromagn
wave propagation and scattering in a constant background medium containing randc
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distributed scatterers. This application is useful in engineering studies involving opti
waves in biological media, and optical and millimeter wave propagation in rain and f
[2-6], for example. For discrete random media, scattering operations represent the lim
summing the independent scattering events from each of the randomly distributed scatte
Because the background medium s constant, these problems are spatially uniform. How
a complete analysis of this problem requires the consideration of polarized waves,
therefore, one must solve the polarized radiative transfer equation forsttevéctor of
Stokes parameters [1-4].

Some common numerical methods for radiative transfer used for this application are
discrete ordinate method [1, 2, 7] and the spherical harmonics method [7]. These metl
are very stable and are computationally efficient for scalar problems where the anisott
of the scattering is small. The finite-element method is a very effective method for study
scalar wave propagation and scattering in highly anisotropic media [8]. However, we h
found that these methods are either inefficient or unstable for computing the solution to
polarized problem, especially in highly anisotropic media at large optical depths. Thereft
stable and efficient methods for solving polarized radiative transfer problems are still nee

This paper addresses the numerical solution of the polarized radiative transfer equatic
study electromagnetic wave propagation in plane-parallel geometries containing randc
distributed and highly anisotropic scatterers in a constant background medium. Specific
we examine a circularly polarized plane wave that is normally incident to the medium. \
consider this simple problem first because it is an ideal setting for ascertaining this methi
applicability to studying highly anisotropic scattering. We feel that successful applications
this method for more complicated problems can only be done after a thorough investiga
of this simplified problem.

Because computational studies of highly anisotropic media require highly resolved
gular compenents of the Stokes vector, we have developed a method that allows or
focus attention upon the corresponding integral terms of the radiative transfer equat
In this method, the spatial components of the intensity and the corresponding differer
operations are spectrally approximated using Chebyshev polynomials [9]. This spectral
proximation yields a system of integral equations for the angularly dependent Chebys
modes for which one can choose any solution method with which to approximate th
scattering operations. Furthermore, this linear system of equations has a bordered, b
banded sparsity structure that can be efficiently solved using a deflated block elimina
method [10]. In contrast to Fourier spectral methods for radiative transfer that can o
consider periodic boundary conditions [11], Chebyshev methods can consider a variet
boundary conditions [9].

After discussing the governing equations for the aforementioned problem, we pres
the Chebyshev spectral method. This method yields a coupled system of integral equa
for the modes of the Chebyshev expansion. We exploit the sparsity structure of this sys
by using the deflated block elimination method [10] to solve the discretized version
this linear system of integral equations efficiently. Finally, we examine some computatio
results of highly anisotropic, Mie resonant scattering where the radii of the dielectric sphe
are comparable to the wavelength of the incident radiation [12].

2. THE GOVERNING EQUATIONS

The radiative transfer equation that models electromagnetic wave propagation in a pl;
parallel medium (see Fig. 1) containing randomly distributed scatterers in a cons
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FIG. 1. A sketch of the plane-parallel problem.

background takes the form [3-5]

di(z, i, )
ez o &7

g +T(, )l (T, 1, )
T

2 1 _ _
=/O /lS(M,qb,u’,fb/)l(f, w,¢)du' do' + F(r, u, ¢), 1)

wheret = poyz is the optical depthyp is the number density of scatteress,is the total
scattering cross section of one of the dielectric spherescost, andl is the 4x 1 vector
of modified Stokes parameters,

% (E4E)
_ e (E,E})
v 2 Im{(E, E;))

Here,E, andE, are the diffuse electric field components in thand¢ directions, respec-
tively, Re and Im denote the real and imaginary parts of a complex number, respectiv
the asterisk denotes the complex conjugate,(@ndienotes an ensemble average.

Consider the expression of the scattered field (far field) from a single dielectric scatte
(E5Y, EY), in terms of the incident fieldg)”, EJ),

E\ _ expikR) < fia f12> Ej’

Ey R far fa Eg) ’
wherek is the wavenumbeR is the radial distance, arid;; } are the scattering amplitudes.
The scattering or Mueller matrix is defined as

S, ¢, 1, 9"
f1a iy fiofi Re{ f1; 15} —Im{fy; 5}
1 f1 131 f2 135 Re{ f,, 35} —Im{f,, 135}

)
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where the products given in the matrix above are evaluatefdf &s= f (i, @) f*(u/, ¢'),
and the extinction matrix is defined as

2ReMyy} 0 Re M1} Im{My2}
0 2RdM Re(M —Im{M
TG d) = € Moo} e{Ma1} m{Mzy} @
2ReMy}  2ReMip) ReMip+ Mz} —Im{Mi; — May}

—2Im{Mz1} 2Im{M1p} Im{M1; — My} Re{Mji;+ May)

(Mn MlZ) _i2_7T( f11 f12>
Mz1 Mg kot\ for foo/

For spherical scatterers, the Mie scattering solution [12, 13] provides the exact value
the scattering amplitudgdi, f12, fo1, f2o} given the radius of the sphere, wavelength of
the incident wave, and relative refractive index of the sphere to the background. In addit

due to the axial symmetry of the spherical scatterers, the extinction matrix becomes diag
because of the following properties Bf for spherical particles [3]:

where

M11= Moy, M2 = M1 =0.

For our computations, only a normally incident, circularly polarized plane wave illum
nates the medium. This plane wave manifests itself in the source term as

1/2
1/2
0
+1

F(r, 1, 0) = S(u, ¢, ' =1,¢' = 0) exp(—1), (5)

wheret denotes a right-handed or left-handed circular polarization, respectively. Thereft
assuming that there is no other intensity directed into the mediun 8 7, gives the
boundary conditions,

I_(r:O,/L)zo forO<u <1,

_ (6)
l(t=10,0) =0 for—1<u <0O.

To treat the azimuthal dependence of the intensity vector in (1), we consider a Fou
expansion of the Stokes vector,

(o]

I @) = D 1™ (x. ) expiing). )
N=—00
Notice that the source term defined in (5) does not depefdamd thus, only the mode-zero
component of the Fourier expansion aboﬂ@,(r, w) is needed to solve the problem. By
carrying out the analysis of this Fourier expansion in (1), we obtain

d - — 1 . _
Mazl(fa w) = —Za(z, p) + /1 Ka(u, u)Z1(r, W) du' + Fi(n) exp(—7)  (8)

d - _ 1 _ _
pg Tole, ) = ~To(r ) + / Kalit, 1) Te, 1) i + Fo() exp(—). (9)



268 KIM AND ISHIMARU

|(0) uo

— 1 —

T, = ( |(O)> and Ir= (V«») (10)
2

are vectors containing the mode-zero components of the Fourier series of modified St
parameters with respect to the azimuthal angle, and

where

2
Ko, 1) = /0 S s ¢ — ¢ d(g — ¢) (11)

2
Kao(u, u') = /0 S, ', — @) d(g — ¢ (12)

are the kernels of the integral operators. H8rand S, are the submatrices of the Mueller
matrix, (3), when it is written as
5= (Sl > )
S &

The source termsE_l and F_z, are the mode-zero components of the source term given
(5). A complete derivation of this reduced system can be found in [5].

3. THE SOLUTION METHOD

3.1. The Chebyshev Spectral Method

In this section, we present the Chebyshev spectral method. For simplicity of notati
we present this method for scalar problems, since the extension of this method for
polarized problem defined in the previous section is intuitive. First, consider mapping
spatial domain from & 7 < 7, to —1<s<1 by the linear transformatios,= 2t /7, —

Then the equation of transfer takes the form

di(s, u)
ds

1
21 +7l (S, ) = ro/ K, u)l (s, n)du' +1oF (1) exp(—to(s+1)/2). (13)
-1

Now we consider the spectral approximation of the intensity,

00 N
L(s, ) =Y & Tk(®) =Y &) T(s), (14)
k=0 k=0
where{T(s)} is the complete and orthonormal set of Chebyshev polynomials,

Tk(s) = cosk cos 1(s)]. (15)

By evaluating the Chebyshev polynomials at the collocation posits, cogxj/N) for
j=0,..., N, we can also write the derivative in terms of an expansion of Chebysh
polynomials [9],

dl(S M)

N
=3 &l (W), (16)
k=1
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where{a, D ()} is related to{éx ()} through the recursion relation,

1
() = 5 [6c18 0 - 8ch(w]  fork=1.2.....N (17)

with

(18)

o= 2 fork=0,N
T 1 forl<k<N-—1

We can also write the exponential part of the source term in a Chebyshev expansion,

N
exp—To(s+ 1)/2) = > by Ti(s). (19)

Substituting these expansions into (13) and using the orthogonality of Chebyshev poly
mials,

SR F b @0
we obtain
2u8 (1) + Tof(1) = TKB(1) + Tobi f (1), (21)
where

1
Kai(u) = / K (1)) A

The derivative operation is poorly conditioned in Chebyshev transform space [9, 14],
we can avoid explicit derivative operations by transforming (21) into a coupled system
integral equations fo{féiﬂl) (w)}. Using (17) on (21), one obtains

208" (W) + L18o(w) = Tobo T () fork =0

B () + o1 LadM () — Ladi(w) = b f(n)  fori<k<N-1 (22

2080 () + en_1LonB () = Toby F () fork =N

where

L= ?(z —K), (23)

andZ is the identity operator.
SinceTi (1) = (£1)%, the boundary conditions are written in Chebyshev transform spa
as

N
ls=-1Lu =) (-D*&u) =0 for0<pu<1 (24)
k=0

N
I(S=+1,M)=Zék(u)=0 for—1<pu <O. (25)
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Applying (17) to the boundary conditions defined above yields

. 3 @ (DM 1 \:o
Bo(1) — 85 () + a ACAP <k+1_k— ) )
NOY
oW =0 2
forO<u <1, and
N-1
A A(D) &) 1 1 A 1 a
Qo(u) +ay" (W) + al W+ 5 —k+1 — () — 2N — )N () =

k=2
(27)

for —1 <1 <0. We now haveN + 2 equations for theN 4 2 unknowns{ao(), &5" (11).,

a0 ().

3.2. The Deflated Block Elimination Method

If we write the unknown modes of the system of integral equations defined above &
vector,

=@"w a’w - Al W), (28)

then this system defined by (22) with the boundary equations, (26) and (27), can be wri
as

MX = F. (29)
The right hand side vector is
T=1bof(n) bif(w) - buf) 0. (30)

The (N + 2) x (N + 2) matrix of operators is

A B
v=(& o) (31)

whereAis an(N + 1) x (N + 1) tridiagonal matrix of operators,

2uz 0
L1 2uT —L
£4 2/,LI —£4 (32)
Lon-1 —2nL  Lyn-1)
L:QN 2,bLI
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Bis an(N + 1) x 1 matrix corresponding to operations &j{u),
B=]| . |, (33)

CTis a 1x (N + 1) matrix containing the operations associated to the boundary conditia
that act upor{al (1u)},
CT=(T¢ 3T -3¢ - —sxwgpI5) (34)

and D =7 is the identity operator associated to the boundary conditions that acts uy
do(1). Here, we define

+ T foru <0
"= {—I for u > 0. (35)

Notice that the matrixA, has a tridiagonal sparsity structure, and that the off-diagon
operations are the same modulo a scalar factor. In addition3fi@", and D matrices
lie on the “border” of theA matrix, and thus, we have a bordered, tridiagonal system ¢
operators.

At this stage in the method, one can choose any numerical treatment of the inte
operators including Nystrin methods and expansion methods [15]. Since this spect
method treats the spatial part of the radiative transfer equation, we can refocus our attel
to the scattering operators. This idea is very advantageous for studies of highly anisotr
scattering since the corresponding integral operations require highly resolved nume
approximations. Let us assume that we have chosen a particular method by which to s
the integral equation yielding a discretized version of the system above. The system
becomes a block tridiagonal, linear system of equations.

The deflated block elimination method is a direct solution method which allows ol
to consider the block tridiagonal part of the system separately. Thus, a modified Gaus
elimination algorithm for block tridiagonal systems can be used to greatly reduce the amc
of storage and work necessary to solve (29). To use the deflated block elimination met|
let us define

x'=@"w aPw - afw),  y= @),
and
fT=1o0of() bif(w) --- bnf(u), g=10).

Then,

(& 5)6)-(0)
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and the generalized, deflated block algorithm

1. SolveAW=B

2. SolveAw = f

3. ComputeS= D — CTW (the Schur compliment)
4. SolveSy=g—CTw

5. Computex=w — Wy

can be used to solve the system of linear equations given in (29) efficiently.

The storage requirements needed to perform this algorithm are very small. Let us ass
that one chooses a discretization of the integral equations that gieldsmatrices for each
operation given in matriA. The diagonal blocks oA will be diagonal matrices themselves,
and the off-diagonal matrices il only differ from each other by a constant facteyyj, as
seen in the definition given in (23). Therefore, onlg a 1 vector containing the diagonal
elements of the matrix that approximates2and theq x g matrix that approximates; is
needed to “effectively” store the entifematrix in a sparse solver for the block tridiagonal
system of equations.

In addition to reducing storage requirements, the diagonal structure of the diagonal blc
of A slightly reduces the work necessary to solve the associated block tridiagonal syst
given in steps 1 and 2 in the algorithm above. Furthermore, the diagonal structure of
blocks inCT can be exploited in steps 3 and 4 of the algorithm above to reduce the wc
and storage necessary to multigly to W andw. If one usesN + 1 Chebyshev modes
whereN is the highest Chebyshev mode used in the spectral approximation, (14), the
conservative estimate of the work required to perform the entire deflated block eliminat
method given above is approximatef$(N — 1) to leading order.

It is noteworthy that throughout this section, we have presented the Chebyshev spe
method in terms of the scalar problem for notational simplicity. For the polarized proble
the value ofg corresponds to the total number of discretized elements for all of the Stok
parameterslg, I,, U, andV)inthe Stokes vector, and not to the number of discrete points
modes used to approximate each of the Chebyshev coeffidgqts, For example, if we use
af-point quadrature rule in a Nystni method to solve the integral equations for the 4
Stokes vector, theg = 44 as long as we resolve each Stokes parameter in the same we

4. NUMERICAL RESULTS: MIE RESONANT SCATTERING

Much of the current interest in multiple scattering in random media comes from t
investigation of localization of classical waves [16]. One particular aspect of this resea
involves the study of electromagnetic wave scattering from randomly distributed, dielec
spheres in the Mie resonance regime where the diameters of the spheres are comp:
to the wavelength [17, 18]. To the authors’ knowledge, a thorough numerical investigat
of the radiative transfer equation in the Mie resonance regime has not been carried
even for planar geometries, since with standard methods it is difficult to resolve the ang
components of the intensity while solving the associated boundary value problem sta
We present here, as an example of the Chebyshev spectral method, some computatic
a continuous, circularly polarized, plane wave incident upon a plane-parallel medium
dielectric spheres tuned to Mie resonance.

For our computations, we used a Nystrmethod [15] to solve the system of integral
equations that employed the abcissa and weights of the Legendre polynomials for
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Gaussian quadrature rule. This method was chosen for its ease of implementation as
as its ability to investigate anisotropic media for these test problems. An algorithm t
computed the Mie scattering solution presented in [13] was used to calculate the elem
of the Mueller matrix, (3), and the integrals, (11) and (12), were computed using numer
quadrature.

To examine the numerical results of this method, we computed the left-handed and ri
handed circularly polarized (LHC and RHC, respectively) transmitted and reflected difft
intensities,

L) = H11(t = 0, ) + 12T = o, ) + V(T = 7o, )], (37)
1e () = 311(x = 0, 10) + Ia(z = 0, ;1) + V(z = 0, ], (38)
I§tc() = A[11(t = To, ) + 12(t = 0, 1) — V(T = To, )] (39)
I§hc() = 3[11(t = 0, u) + lo(z =0, ) — V(t = 0, w)]. (40)

In addition, we examined the magnitudes of the LHC and RHC transmitted and reflec
fluxes,

Fe =2n / tundn. (41)
1
ﬂ%—h/ | He(wpdp, (42)
Fc—2n [ 19 d 43
RHC T . RHc(M)M M, ( )
r ! r
Fihe=2n / | S dye. (44)
-1

These flux integrals were computed using the Gaussian quadrature rule associated wif
aforementioned Nysbrit method.

4.1. Scattering within and outside of the Mie Resonance Regime

In order to demonstrate the need for highly resolved integral operations for these c
putations, we performed some computations to compare scattering within and outsid
the Mie resonance regime. In Fig. 2, the angular distribution of the scattered intensit
the far field regime from a single dielectric sphere (the scattering diagram) is plottec
show the necessity for highly resolved numerical approximations of the integral opera
for Mie resonant scattering. The scattering diagram is directly computed from the N
scattering solution [12]. In Fig. 3, the transmitted and reflected intensities were compt
to show the differences between the nearly isotropic and anisotropic scattering. To ex
ine scattering within the Mie resonance regime, we considered an incident plane wav
wavelengthh =3 mm and dielectric spheres of radii@& 3 mm. For the cases outside of
the Mie resonance regime, we considered wavelengths-80 mm on the same dielectric
spheres.
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FIG. 2. Angular distributions of the far field scattered intensity (scattering diagram) for a single dielectr
sphere attwo different frequencies. The left plot shows the scattering diagram on the plane orthogonal to the inc
polarization, and the right plot shows the scattering diagram on the plane parallel to the incident polarization.
solid line represents the case in which the wavelength is comparable to the diameter of the sphere and the d
line represents the case in which the wavelength is significantly largedx) than the diameter of the sphere.

4.2. Conservative Scattering

Conservative scattering refers to the case in which there is no absorption in the mec
(the relative refractive index of the scattererg, is a strictly real number). Then all of the
power is scattered and the total flux transmitted and reflected out of the medium is e
to the incident power [2]. We used conservative scattering to test the Chebyshev spe
method’s ability to solve the polarimetric radiative transfer equation. A sample of the rest
from these computations can be found in Table I. Here, we considered highly anisotrc

TABLE |
Relative Error of the Conservation of Flux for Various Numbers
of Chebyshev Modes and Quadrature Points

Number of quadrature points

Number of Chebyshev
modes 20 40 60
5 0.16607E-1 0.16607E-1 0.16607E-1
9 0.91983E-5 0.91983E-5 0.91983E-5
17 0.86012E-10 0.48853E-10 0.35104E-10
33 0.85963E-10 0.48802E-10 0.35055E-10
65 0.85963E-10 0.48802E-10 0.35054E-10

Note.Heret, =5.0,a=3 mm,\. =3 mm, anch,, = 2.15.
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FIG. 3. Comparison of intensity computations within and outside of the Mie resonance regime. Here
have plotted the LHC and RHC polarized, transmitted, and reflected intensities. The solid lines correspond t
casea = A =3 mm (within the Mie resonance regime) and the dashed lines correspond to tlee-cd8sam and
A =30 mm (outside the Mie resonance regime). For these computatica®.0, N = 2.15+10.01, the number
of Chebyshev modes was fixed at 65, and the number of quadrature points was fixed at 60.

scattering where the wavelength of the incident radiatigmnd the radius of the spheres,
a, were equal to 3 mm for a moderate optical depthpf 5.0. From these results, we

observed that the method demonstrated the typical hyper-algebraic convergence of sp
methods with the conservation of power calculation as the number of Chebyshev mc
increased. Furthermore, as the number of quadrature points increased, we observe
the error decreased. In Fig. 4, we show a sample result of our computations for vari
resolutions of the Nystrn method. Notice that the scattering for the computations shov
in Fig. 4, however, is not conservative. The relative refractive index of the scatterers
that plot isn; =2.15+i10.01. Therefore, there is some absorption in the medium. T
radius, wavelength, and relative refractive index values correspond to the experime
configuration presented in [17].

It is noteworthy that in Table I, the error converges to some finite value as one resol
the Chebyshev spectrum. Because the associated system of integral equations is s
using a Nystoin method that has some inherent error properties, the spectral resolu
of the conservation calculation is limited. In addition, we conjecture that, as one resol
the integral operations by increasing the quadrature points, the condition number of
matrix, M, increases and thereby limits the accuracy of the method, slightly. Howev
relative errors on the order of 18 for these conservation calculations is negligibly small.
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FIG. 4. Numerical quadrature refinement studies. Here we have plotted the LHC and RHC polarized, tre
mitted, and reflected intensities for a variety of angular resolutions. For these computatieds), a=3 mm,
A =3 mm,n, =2.15+i0.01, and the number of Chebyshev modes was fixed at 17.

and indicates that the Chebyshev spectral method is very effective for these conserv
scattering computations.

4.3. Boundary Conditions

From our observations, we have determined that under-resolving the Chebyshev ex
sion, (14), manifests itself in the results of these computations as errors in satisfying
boundary conditions, (26) and (27). The original problem states that no intensity was
rected in toward the medium, and so both the LHC and RHC components of the inten
must satisfy

IL/RHC(T = 0, ,bL) =0 for0 < n =< 1, (45)
lLRHe(T = To, ) =0 for—1=pu <O. (46)
Therefore, we computed the infinity norm of the error at the boundaf&sdefined as
€ =

BC I [ computed__ | true”oo’ (47)

which gives the maximum difference error associated with the boundary data for the L
and RHC components of the transmitted and reflected intensities as a means of studyin
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TABLE Il
Infinity Norm of the Error Corresponding to the Boundary Conditions, €5¢,
for Various Numbers of Chebyshev Modes

Reflected intensity Transmitted intensity
Number of Chebyshev
modes LHC RHC LHC RHC

9 0.1039E-1 0.8859E-2 0.3039E-1 0.2592E-1

17 0.7030E-3 0.6000E-3 0.2532E-4 0.2444E-4

33 0.5648E-5 0.4743E-5 0.1527E-6 0.1481E-6
65 0.4377E-11 0.3415E-11 0.1148E-12 0.1080E-12
129 0.2998E-15 0.3977E-15 0.3863E-15 0.2769E-15

Note.Herer, = 10.0, a= 3 mm,A = 3 mm,n,, = 2.15+i0.01, and the number of quadrature
points was fixed at 40.

convergence of the Chebyshev spectral method. A sample of the results is found in Tab
For these computations, we considered an optical depty ©f10.0 fora=1 =3 mm,
and ng =2.15+10.01. The number of quadrature points remained fixed at 40 and v
varied the number of Chebyshev modes. Again, we observed that increasing the nur
of Chebyshev modes indicates the spectral accuracy of this method. The boundary ¢
reduces hyper-algebraically as the number of modes increases. Therefore, the resol
of the Chebyshev expansion affects the method’s ability to satisfy the boundary cor
tions.

4.4. First Order Scattering

If we consider a tenuous distribution of the dielectric spheres, then the optical de
becomes smalk, « 1, and the first order scattering approximation is valid [2]. The firs
order scattering solution assumes that total radiation incident upon the scatterers is
proximately the incident radiation. We compared the computed solutions to the first or
scattering approximation at small optical depths in the Mie resonance regime to ex
ine the consistency of the Chebyshev spectral method. In these comparison studies
found that the computed solutions agree very well with the first order scattering apprc
mation.

A sample comparison can be seen in Fig. 5. For this computation, we considerec
optical depth oft, = 0.05 witha =1 =3 mm, andn,¢;=2.15+10.10. Notice that for this
computation, the absorption is a little larger than that from the previous computatic
presented above. The computed solution qualitatively agrees very well with the first or
scattering solution. Quantitative differences are greategt~a$. Because the abscissas
of the Legendre polynomials are unevenly spaced and clustered near the boundari
u = =£1, the intensities have the lowest angular resolutign~at0. Another quadrature rule
may provide a better resolution at points ngat 0, but since the distribution of scattered
intensity in the Mie resonance regime is directed in the “forward” directionjeog =1
(see Fig. 2), the higher angular resolution due to the locations of the Legendre abscis:
u ~ 1ismore appropriate for these problems. From this example and other numerical stu
that we have done, we observed that the computed solution from the Chebyshev spe
method is consistent with the first order scattering approximation within the approximatio
asymptotic region of validity.
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FIG. 5. A comparison of the Chebyshev spectral method’s computed solution and the first order scatte
approximation solution. Herg, = 0.05, a= A = 3 mm, andh,q = 2.15+i0.10. For these computed solutions, we
used 60 quadrature points and the number of Chebyshev modes was 33.

5. CONCLUSION

We have discussed a Chebyshev spectral method for solving the polarized radie
transport equation in a plane-parallel, spatially homogeneous medium that models ele
magnetic wave propagation and scattering from a discrete random medium. This me
differs from other methods for radiative transfer by using a Chebyshev spectral expan:
for the spatial part of the intensity vector, thereby yielding a coupled system of Fredhc
integral equations of the second kind. In this paper, we used adwysiréthod to solve the
integral equations, but the Chebyshev spectral method does not restrict one to any parti
numerical integral equation method. The bordered, block tridiagonal system of equati
that results from the spectral approximation can be efficiently solved using a deflated bl
elimination method in conjunction with a block tridiagonal Gaussian elimination algorithr
By refocusing our attention to the integral operations rather than the derivative operatic
we are able to examine highly anisotropic scattering media, including Mie resonant me
By examining conservative scattering, errors associated with the boundary conditions,
comparisons with first order scattering for problems in the Mie resonance regime, we h
demonstrated the Chebyshev spectral method’s effectiveness for solving highly anisotr
scattering problems.

The two-frequency radiative transfer equation governs electromagnetic pulse propage
in discrete random media [19]. For these pulse problems, the intensity vector parametric
depends on two frequencies and is, in general, a complex function. Computational mett
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for two-frequency radiative transfer involve solving radiative transfer equations for ec
frequency pair to construct the two-frequency spectrum of the intensity which is recove
into the time domain by Fourier transforms [6]. The frequency dependent problem, therefi
requires an efficient method for computing the solution to the radiative transfer equation
a given frequency pair. Therefore, the method presented in this paper for continuous w;
can be used as the solver for the associated radiative transfer equations for each freqt
pair to generate a two-frequency spectrum.

This method was designed with the specific intent of studying polarimetric problems w
highly anisotropic scattering from discrete random media. The advantage of this met
is that it allows one to focus direct attention on resolving the integral operations inste
of the boundary value problem. However, there are potential extensions of this met
for other problems of radiative transfer. As previously mentioned in the Introductic
Chebyshev spectral methods can solve a wide variety of boundary value problem
Dirichlet, Neumann, and Robin boundary conditions [9]—and may be an attractive alter
tive to existing Fourier methods [11] that can only solve periodic boundary value probler
The Chebyshev spectral method should be general enough to consider spatially var
opacities and higher spatial dimensions in a way similar to that presented in [11], althol
we have not investigated this idea thoroughly. We will be considering more complica
geometries in future studies, during which we will ascertain this method’s usefulness
larger spatial dimensional problems. In preparation for these problems, we are curre
investigating the effectiveness of iterative methods in solving the linear system of integ
equations to increase the performance and decrease storage requirements further.
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